粉體行業(yè)在線展覽
面議
496
LCi-T 便攜式光合儀是*小巧、輕便的便攜式光合作用測定儀,用以測量植物葉片的光合速率、蒸騰速率、氣孔導(dǎo)度等與植物光合作用相關(guān)的參數(shù)。儀器應(yīng)用IRGA(紅外氣體分析)原理,精密測量葉片表面CO2濃度及水分的變化情況來考察葉片與植物光合作用相關(guān)的參數(shù)。特殊的設(shè)計可在高濕度、高塵埃環(huán)境使用。既可在研究中使用,又是很好的教學(xué)儀器。
上圖左為全套光合儀主機配件及便攜箱等,上圖中為光合儀主機和手柄,上圖右為操作人員進行野外實驗
l 植物光合生理研究
l 植物抗脅迫研究
l 碳源碳匯研究
l 植物對全球氣候變化的相應(yīng)及其機理
l 作物新品種篩選
l 配備手持式葉綠素?zé)晒鈨x,內(nèi)置了所有通用葉綠素?zé)晒夥治鰧嶒灣绦颍▋商谉晒獯銣绶治龀绦颉?/span>3套光響應(yīng)曲線程序、OJIP-test等
l 彩色觸摸屏,根據(jù)環(huán)境光線自動調(diào)整亮度,既方便野外查看數(shù)據(jù),又延長續(xù)航時間
l 任選RGB(Red Green Blue)或白色光源之一作為標配
l 便攜式設(shè)計,體積輕巧,僅重2.4 Kg
l 微型IRGA置于測量手柄中,大大縮短CO2測量的反應(yīng)時間
l 可在惡劣環(huán)境下使用
l 可方便互換不同種類的葉室
l 葉室材料經(jīng)精心選擇,以確保CO2及水分的測量精度
l 數(shù)據(jù)存儲量大,采用即插即拔SD卡
l 操作簡單,維護方便,葉室所有區(qū)域都很容易清潔
l 采用低能耗技術(shù),野外單電池持續(xù)工作時間可達10小時
l 內(nèi)置GPS
上圖為英國劍橋大學(xué)植物科學(xué)系M. Davey博士在南極洲對藻類光合作用研究時的工作圖片,因LC系列光合儀輕便小巧,堅固耐用,續(xù)航持久等特點被列為**。
l 測量參數(shù):光合速率、蒸騰速率、胞間CO2濃度、氣孔導(dǎo)度、葉片溫度、葉室溫度、光合有效輻射、氣壓、光響應(yīng)曲線等
l 手持葉綠素?zé)晒?/span>儀(選配)
1. 測量參數(shù)包括F0、Ft、Fm、Fm’、QY_Ln、QY_Dn、NPQ、Qp、Rfd、RAR、Area、M0、Sm、PI、ABS/RC等50多個葉綠素?zé)晒鈪?shù),及3種給光程序的光響應(yīng)曲線、2種熒光淬滅曲線、OJIP曲線等
2. 高時間分辨率,可達10萬次每秒,自動繪出OJIP曲線并給出26個OJIP-test測量參數(shù)包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、M0、Area、Fix Area、Sm、Ss、N、Phi_P0、Psi_0、Phi_E0、Phi-D0、Phi_Pav、PI_Abs、ABS/RC、TR0/RC、ET0/RC、DI0/RC等
l CO2測量范圍:0-2000ppm
l CO2測量分辨率:1ppm
l CO2采用紅外分析系統(tǒng),差分開路測量系統(tǒng),自動置零,自動氣壓和溫度補償
l H2O測量范圍:0-75 mbar
l H2O測量分辨率:0.1mbar
l H2O測量采用雙激光調(diào)諧快速響應(yīng)水蒸氣傳感器
l PAR測量范圍:0-3000 μmol m-2 s-1
l 葉室溫度:-5 - 50℃ 精度:±0.2℃
l 葉片溫度:-5 - 50℃
l 葉室中空氣流量:68 –340ml / min
l 空氣流量精度:全量程的±2%
l 預(yù)熱時間:20℃時5分鐘
l 數(shù)據(jù)存儲:SD卡,**支持32GB擴展,可存儲16,000,000組典型數(shù)據(jù)
l 數(shù)據(jù)接口:mini-USB接口,RS232標準接口
l 圖形顯示:彩色WQVGA LCD觸摸屏,480 x 272像素,尺寸95 x 53.9 mm,對角線長 109mm,可實時圖形顯示各測量參數(shù)
l 可選配便攜式光源:具有PLU控制單元,控光范圍0-2400 μmol m-2 s-1
l 可選配葉室
1. 寬葉葉室:長×寬為2.5×2.5cm,適用于闊葉及大多數(shù)葉片類型
2. 窄葉葉室:長×寬為5.8×1cm,適用寬度小于1cm的條形葉
3. 針葉葉室:長約69mm,直徑47mm,適用于簇狀針葉(白光光源)
4. 小型葉葉室:葉室直徑為16.5mm,測量面積2.16cm2
5. 土壤呼吸/小型植物室:測量測量土壤呼吸,或者高度低于55mm的整株草本植物光合作用,底面直徑為11cm
6. 多功能測量室:長×寬×高為15×15×7cm,分為上下兩部分,上部測量小型植物光合作用,下部分測量土壤呼吸
7. 果實測量室:上下兩部分組成,上部透明,下部為金屬,可測量果實**直徑為11cm,**高度為11.5cm
8. 冠層測量室:底面直徑12.7cm,高12.2cm,適用于地表冠層
9. 熒光儀聯(lián)用適配器:適用于連接多種葉綠素?zé)晒鈨x
上圖從左到右依次為寬葉室、窄葉室、LED光源、熒光儀聯(lián)用葉室、小型葉室
上圖從左到右依次為針葉室、果實測量室、土壤呼吸室、多功能測量室、冠層室
l 供電系統(tǒng):內(nèi)置12V 2.8AH鉛酸電池,可持續(xù)工作10小時左右
l 操作環(huán)境:5到45℃
l 主機尺寸:240×125×140mm,2.4Kg
l 主機顯示參數(shù):環(huán)境CO2和水蒸汽;CO2和水蒸汽變化;葉室和葉片的溫度;氣流速率;大氣壓;光合有效輻射;光合速率;胞間CO2濃度;蒸騰速率;氣孔導(dǎo)度;電池狀態(tài)等
Leaf life span optimizes annual biomass production rather than plant photosynthetic capacity in an evergreen shrub, Marty C. et al. 2010, New Phytologist, 187(2): 407-416
本文研究了Rhododendron ferrugineum(高山玫瑰杜鵑,杜鵑屬模式種)凈光合能力與葉片壽命的關(guān)系,發(fā)現(xiàn)有更多較老葉片的種群其光合能力更強(圖中深色區(qū)域為一年葉片和二年葉片)。
英國
1) 與葉綠素?zé)晒鈨x組成光合作用與葉綠素?zé)晒鉁y量系統(tǒng)
2) 與FluorCam聯(lián)用組成光合作用與葉綠素?zé)晒獬上駵y量系統(tǒng)
3) 可選配高光譜成像實現(xiàn)從單葉片到復(fù)合冠層的光合作用時空變化研究
4) 可選配O2測量單元
5) 可選配紅外熱成像單元以分析氣孔導(dǎo)度動態(tài)
6) 可選配PSI智能LED光源
7) 可選配FluorPen、SpectraPen、PlantPen等手持式植物(葉片)測量儀器,全面分析植物葉片生理生態(tài)
8) 可選配ECODRONE®無人機平臺搭載高光譜和紅外熱成像傳感器進行時空格局調(diào)查研究
2. Elansary, H.O. Acta Physiol Plant (2017). Green roof Petunia, Ageratum, and Mentha responses to water stress, seaweeds, and trinexapac-ethyl treatments J Acta Physiologiae Plantarum, 39,739: 145. doi:10.1007/s11738-017-2444-3.
3. Lee T.Y., et al. (2017). Physiological responses of Populus sibirica to different irrigation regimes for reforestation in arid area. South African Journal of Botany, Volume 112, September 2017, Pages 329-335, ISSN0254-6299.
4. Magalhaes ID, Lyra GB, Souza JL, Teodora I, Cavalcante CA, Ferreira RA and Souza RC (2017). Physiology and Grain Yield of Common Beans under Evapotranspirated Water Reposition Levels. Irrigat Drainage Sys Eng 2017, 6:1 DOI: 10.4172/2168-9768.1000183.
6. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. Haesaert G. (2017). Yield Performance, Carbon Assimilation and Spectral Response of Triticale to Water Stress. Experimental Agriculture, Vol.52, Issue 1.
7. Munjonji L., Ayisi K.K., Vandewalle B., Haesaert G., Boeckx P. (2017). Carbon Isotope Discrimination as a Surrogate of Grain Yield in Drought Stressed Triticale. In: Leal Filho
8. Pourghayoumia M. Bakhshi, D. Rahemi M., Kamgar-Haghighic A.A., Aalamid A. (2017). The physiological responses of various pomegranate cultivars to drought stress and recovery in order to screen for drought tolerance” Scientia Horticulturae. Volume 217, 15 March 2017, Pages 164-172.
9. Sakhonwasse S., Tummachai K., Nimnoy, N. (2017).Influences of LED Light Intensity on Stomatal Behavior of Three Petunia Cultivars Grown in a Semi-closed System” Environmental Control Biology, 55 (2), 93-103.
12. Ouledali, A., Ennajh, M., Ferrandino, A., Khemira, H., Schubert, A., Secchi, F. (2018). Influence of arbuscular mycorrhizal fungi inoculation on the control of stomata functioning by abscisic acid (ABA) in drought-stressed olive plants” South African Journal of Botany Vol. 121, March 2019, 152-158.
13. Tahjib-Ul-Arif, M., Siddiqui, M.N., Sohag, A.A.M. et al. J Plant Growth Regul (2018). Salicylic Acid-Mediated Enhancement of Photosynthesis Attributes and Antioxidant Capacity. Contributes to Yield Improvement of Maize Plants Under Salt Stress”.
14. Qiu, K., Xie, Y., Xu, D. et al. Braz. J. Bot (2018). Photosynthesis-related properties are affected by desertification reversal and associated with soil N and P availability”.
15. W., Belay S., Kalangu J., Menas W., Munishi P., Musiyiwa K.. Climate Change Adaptation in Africa. Climate Change Management. Springer, Cham.
16. Mujahid Ali1, Choudhary Muhammad Ayyub, Muhammad Amjad and Riaz Ahmad. (2019). Evaluation of thermo-tolerance potential in cucumber genotypes under heat stress.Pak. J. Agri. Sci., Vol. 56(1), 53-61; 2019 DOI: 10.21162/PAKJAS/19.7519