久久综合久久美利坚中国_中曰韩无码视频_久久97久久97精品免视看_黄网址免费永久在线观看免费

粉體行業(yè)在線展覽

產(chǎn)品

產(chǎn)品>

分析儀器設(shè)備>

光學(xué)儀器及設(shè)備

>無液氦低溫強磁場掃描探針顯微鏡

無液氦低溫強磁場掃描探針顯微鏡

直接聯(lián)系

量子科學(xué)儀器貿(mào)易(北京)有限公司

德國

產(chǎn)品規(guī)格型號
參考報價:

面議

關(guān)注度:

429

產(chǎn)品介紹

德國Attocube Systems AG公司成立于2002年,作為納米科學(xué)領(lǐng)域年輕的儀器供應(yīng)商,Attocube Systems AG以其掌握的納米精度定位**成果和強大的技術(shù)實力,在短短的幾年中研制開發(fā)了低震動無液氦磁體與恒溫器、多種低溫磁場下工作的掃描探針顯微鏡、極端環(huán)境應(yīng)用納米精度位移器、皮米精度位移激光干涉器等系列產(chǎn)品,深受用戶贊譽。自成立以來,Attocube Systems AG已經(jīng)獲得了許多榮譽,包括Finalist for the 27th Innovation Award of the German Ecomomy 2007和 ****00 Innovation Award 2013 等。

無液氦低溫強磁場掃描探針顯微鏡

德國attocube公司推出的attoDRY Lab系列無液氦低溫強磁場掃描探針顯微鏡系統(tǒng)基于attoDRY系列無液氦強磁場超低震動恒溫器和多種掃描探針顯微鏡插件,特別適應(yīng)于低溫光學(xué)實驗、掃描探針顯微鏡等應(yīng)用,產(chǎn)品優(yōu)異的穩(wěn)定性為超高分辨率的表面表征研究奠定了堅實的基礎(chǔ)。不止于此,產(chǎn)品還*早集成了簡單易用的觸摸屏控制系統(tǒng)以方便自由控制溫度大小與磁場強度的商業(yè)化恒溫器。掃描探針顯微鏡插件包括:attoAFM/MFM/cAFM/PRFM原子力、磁力、導(dǎo)電力、壓電力顯微鏡;attoCFM共聚焦顯微鏡;Raman與光致發(fā)光譜;atto3DR雙軸旋轉(zhuǎn)平臺等。

參數(shù)與技術(shù)特點:

+ 無液氦,閉路可循環(huán)系統(tǒng)

+ 獨特設(shè)計,超低震動(0.12 nm RMS)

+ 溫度范圍:1.5 K...300 K 或 4 K...300 K

+ 磁場強度:**可達15T

+ 多功能測量平臺:AFM/MFM/ct-AFM/PRFM/CFM/RAMAN

+ 超高溫度穩(wěn)定性

+ 全自動控制,觸摸屏控制

+ 快速冷卻:1-2小時樣品冷卻

相關(guān)閱讀:

1、無液氦低溫強磁場共聚焦顯微鏡 - attoCFM

2、低溫強磁場原子力/磁力/掃描霍爾顯微鏡 - attoAFM/attoMFM/attoSHPM

3、磁共振顯微鏡/低溫強磁場磁共振顯微鏡 - attoCSFM

4、低震動無液氦磁體與恒溫器 - attoDRY系列

5、atto3DR低溫雙軸旋轉(zhuǎn)臺

部分發(fā)表文獻:

1. Chaoyang Lu et.al, Coherently driving a single quantum two-level system with dichromatic laser pulses, Nature Physics, 15,941-945,(2019)

2. Chaoyang Lu et.al, Towards optimal single-photon sources from polarized microcavities. Nature Photonics, 13, 770–775 (2019)

3. Yuanbo Zhang et. Al, “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”Nature, 572, 215-219 (2019)

4. P. Maletinsky et. Al, Probing magnetism in 2D materials at the nanoscale with single-spin microscopy, Science, 364, 973 (2019)

5. Haomin WANG et al, “Isolating hydrogen in hexagonal boron nitride bubbles by a plasma treatment”.Nature communications, 10, 2815 (2019)

6. Mingyuan Huang et.al, Magnetic Order-Induced Polarization Anomaly of Raman Scattering in 2D Magnet CrI3, Nano Letters, 2020,20,1, 729-734

7. Alexander H?gele et. al, Cavity-control of interlayer excitons in van der Waals heterostructures, Nature communications, 2019,10:3697.

8. Hanxuan Lin, et al. Unexpected Intermediate State Photoinduced in the Metal-Insulator Transition of Submicrometer Phase-Separated Manganites. Phys. Rev. Lett. 120, 267202(2018)

9. Chaoyang Lu et.al, High-efficiency multiphoton boson sampling. Nature Photonics, 11, 361-365, (2017)

10. K. Yasuda, et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 2017, 358, 1311-1314

11. Zhu, Y. et al. Chemical ordering suppresses large-scale electronic phase separation in doped manganites. Nature communications, 2016,7:11260.

12. Yang, W.;et al. Electrically Tunable Valley-Light Emitting Diode (vLED) Based on CVD-Grown Monolayer WS2. Nano Letters 2016, 16, 1560-1567.

13. Surajit Saha; et al. Long-range magnetic coupling across a polar insulating layer, Nature communications, 2016,7:11015.

14. He, Y. M.; et al. Single quantum emitters in monolayer semiconductors.Nature Nanotechnology 2015, 10, 497-502.

15. Nazin, G.; et al. Visualization of charge transport through Landau levels in graphene. Nature Physics 2010, 6, 870-874.

16. Proton magnetic resonance imaging using a nitrogen–vacancy spin sensor. Nature Nanotechnology, 2015,10,120-124.

17. Nanoscale nuclear magnetic imaging with chemical contrast. Nature Nanotechnology, 2015, 10, 125-128.

18. Observation of biexcitons in monolayer WSe2. Nature Physics, 2015, 11, 477-481.

19. Visualization of a ferromagnetic metallic edge state in manganite strips. Nature Communications, 2015, 6:6179.

20. Observation of Excitonic Fine Structure in a 2D Transition-Metal Dichalcogenide Semiconductor. ACS Nano, 2015, 9, 647-655.

21. Energy losses of nanomechanical resonators induced by atomic force microscopy-controlled mechanical impedance mismatching. Nature Communications, 2014, 5:3345.

22. Deterministic and electrically tunable bright single-photon source. Nature Communications, 2014, 5:3240.

23. Dynamic Visualization of Nanoscale Vortex Orbits. ACS Nano, 2014, 8, 2782-2787.

24. Transition from slow Abrikosov to fast moving Josephson vortices in iron pnictide superconductors. Nature Materials, 2013, 12, 134-138.

25. Stray-field imaging of magnetic vortices with a single diamond spin. Nature Communications, 2013, 4:2279.

26. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nature Nanotechnology, 2013, 8, 569-574.

27. Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. Physical Review B, 2013, 88, 165407.

28. Origin of negative magnetoresistance of GaAs/(Ga,Mn)As core-shell nanowires. Physical Review B, 2013, 87, 245303.

29. Magnetic Imaging on the Nanometer Scale Using Low-Temperature Scanning Probe Techniques. Microscopy Today, 2011, 19, 34-38.

30. Visualization of charge transport through Landau levels in graphene. Nature Physics, 2010, 6, 870-874.


部分用戶列表

attocube公司產(chǎn)品以其穩(wěn)定的性能、極高的精度和良好的用戶體驗得到了國內(nèi)外眾多科學(xué)家的認可和肯定。attocube公司的產(chǎn)品在國內(nèi)也得到了低溫、超導(dǎo)、真空等研究領(lǐng)域**科學(xué)家和研究組的歡迎......

北京大學(xué)

清華大學(xué)

中國科技大學(xué)

南京大學(xué)

中科院物理所

中科院半導(dǎo)體所

中科院武漢數(shù)學(xué)物理所

上海同步輻射中心

中科院上海應(yīng)用技術(shù)物理研究所

北京理工大學(xué)

復(fù)旦大學(xué)

哈爾濱工業(yè)大學(xué)

中國科學(xué)院蘇州納米技術(shù)與納米仿生研究所……

產(chǎn)品咨詢

無液氦低溫強磁場掃描探針顯微鏡

量子科學(xué)儀器貿(mào)易(北京)有限公司

請?zhí)顚懩男彰?

請?zhí)顚懩碾娫挘?

請?zhí)顚懩泥]箱:*

請?zhí)顚懩膯挝?公司名稱:*

請?zhí)岢瞿膯栴}:*

您需要的服務(wù):

發(fā)送

中國粉體網(wǎng)保護您的隱私權(quán):請參閱 我們的保密政策 來了解您數(shù)據(jù)的處理以及您這方面享有的權(quán)利。 您繼續(xù)訪問我們的網(wǎng)站,表明您接受 我們的使用條款

無液氦低溫強磁場掃描探針顯微鏡 - 429
量子科學(xué)儀器貿(mào)易(北京)有限公司 的其他產(chǎn)品

FLOW

光學(xué)儀器及設(shè)備
相關(guān)搜索
關(guān)于我們
聯(lián)系我們
成為參展商

© 2025 版權(quán)所有 - 京ICP證050428號