久久综合久久美利坚中国_中曰韩无码视频_久久97久久97精品免视看_黄网址免费永久在线观看免费

粉體行業(yè)在線(xiàn)展覽

產(chǎn)品

產(chǎn)品>

分析儀器設(shè)備>

制冷設(shè)備

>超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器

超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器

直接聯(lián)系

量子科學(xué)儀器貿(mào)易(北京)有限公司

美國(guó)

產(chǎn)品規(guī)格型號(hào)
參考報(bào)價(jià):

面議

關(guān)注度:

938

產(chǎn)品介紹

超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器

Montana Instruments推出了全新超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器——CRYOSTATION®,該系列產(chǎn)品是采用新的性能標(biāo)準(zhǔn)和架構(gòu)而生產(chǎn)的新一代標(biāo)準(zhǔn)化產(chǎn)品,可使用通用型的光學(xué)桌面進(jìn)行固定,使用方便。采用**減震技術(shù)和特殊溫度穩(wěn)定技術(shù),在不犧牲任何便捷性的同時(shí),為實(shí)驗(yàn)提供**的溫度穩(wěn)定性和超低震動(dòng)環(huán)境。如今Cryostation S系列恒溫器具有多種型號(hào)、配置、選件與配件可選,能夠滿(mǎn)足每個(gè)研究人員的獨(dú)特需求。

應(yīng)用領(lǐng)域

金剛石色心、NV色心、量子計(jì)算、量子光學(xué)、腔量子電動(dòng)力學(xué)、自旋電子學(xué)、磁光克爾效應(yīng)、單光子發(fā)射......

基本特點(diǎn)

★ 低溫度波動(dòng)和納米級(jí)的震動(dòng)可為各種測(cè)量提供穩(wěn)定的實(shí)驗(yàn)環(huán)境。

超大溫區(qū)(3.2K - 350K)與超快的變溫速度可提高實(shí)驗(yàn)效率。

全干式系統(tǒng),無(wú)需消耗氦氣或液氦,可極大降低實(shí)驗(yàn)成本。

實(shí)用性?xún)?yōu)勢(shì)

直觀的用戶(hù)界面和全自動(dòng)控制系統(tǒng)提高了實(shí)驗(yàn)效率。

電學(xué)和光學(xué)通道以及樣品安裝都極大地提高了實(shí)驗(yàn)靈活性。

完全集成、交鑰匙設(shè)計(jì)方案,讓您快速啟動(dòng)和實(shí)現(xiàn)研究計(jì)劃。

桌面式設(shè)計(jì)方案,方便移動(dòng),無(wú)縫銜接現(xiàn)有的室溫實(shí)驗(yàn)方案。

設(shè)備介紹

制冷系統(tǒng)

系統(tǒng)采用制冷機(jī)閉循環(huán)制冷方式,只有少量氦氣密封在系統(tǒng)內(nèi)部,日常運(yùn)行無(wú)需消耗液氦或氦氣

★ 降低成本:日常運(yùn)行不消耗氦氣可在很大程度上降低試驗(yàn)成本。

★ 操作簡(jiǎn)單:省去了更換氦氣瓶和監(jiān)測(cè)氦氣量等繁瑣的實(shí)驗(yàn)工作。

系統(tǒng)采用變頻壓縮機(jī),極大的改善了實(shí)驗(yàn)的能耗和性能

★ 低能耗需求:只需單項(xiàng)50Hz 208-240V電力需求,無(wú)需水冷機(jī),功率3.6KW。

★ 低噪音:壓縮機(jī)采用的變頻技術(shù)在降低能耗的同時(shí)較大程度上降低了冷頭的工作噪音和震動(dòng)。

系統(tǒng)架構(gòu)

系統(tǒng)采用優(yōu)化的設(shè)計(jì)方案,恒溫器、樣品臺(tái)可直接固定在任何的光學(xué)桌面上

便捷性:樣品腔周?chē)纱罱ǜ鞣N光路,方便實(shí)現(xiàn)各種光路實(shí)驗(yàn)方案。

靈活性:系統(tǒng)可安裝在英制或公制光學(xué)桌面,可與螺孔陣列平行或成45°角。

模塊化:無(wú)需任何額外的輔助設(shè)施,可以方便的移動(dòng)設(shè)備。

系統(tǒng)控制

嵌入式程序的觸摸屏控制

全自動(dòng)、優(yōu)化的溫度控制:簡(jiǎn)單設(shè)定目標(biāo)溫度,一鍵Cooldown。

其他參數(shù)控制:可實(shí)現(xiàn)定制化參數(shù)控制,例如樣品腔除氣或干燥氮?dú)鉀_洗。

監(jiān)視系統(tǒng)狀態(tài):用戶(hù)界面實(shí)時(shí)顯示系統(tǒng)狀態(tài),包括溫度、溫度穩(wěn)定性、系統(tǒng)真空度等。

軟件記錄系統(tǒng)數(shù)據(jù):方便數(shù)據(jù)的導(dǎo)出。

遠(yuǎn)程控制與其他語(yǔ)言

遠(yuǎn)程控制:利用虛擬網(wǎng)絡(luò)計(jì)算(VNC)技術(shù),可通過(guò)電腦方便地對(duì)系統(tǒng)進(jìn)行遠(yuǎn)程控制。

外部腳本:支持多種現(xiàn)代語(yǔ)言通過(guò)RESTful API腳本控件進(jìn)行編程控制(Python, MATLAB, LabVIEW, C# 等)。

遠(yuǎn)程診斷:工程師可以方便的通過(guò)網(wǎng)絡(luò)對(duì)設(shè)備的故障進(jìn)行診斷和排除。

系統(tǒng)與真空控制單元的完全自動(dòng)化流程

完全自動(dòng)化控制:系統(tǒng)在抽真空、降溫、恒溫、升溫、充氣等全過(guò)程可以自動(dòng)設(shè)定**化的參數(shù)。

完善的系統(tǒng)監(jiān)控:系統(tǒng)通過(guò)自動(dòng)的過(guò)程監(jiān)控與錯(cuò)誤處理保護(hù)系統(tǒng)和樣品,避免誤操作。

干燥氮?dú)馇逑催x件:抽真**或充氣時(shí)可以減少外界大氣環(huán)境的影響有助于快速降溫。

樣品環(huán)境

樣品的安裝和更換可直接通過(guò)取下外層(真空層)和屏蔽層的蓋子即可。

可選擇的實(shí)驗(yàn)配置:有各種樣品安裝方案和位置控制選件可供選擇,包括光纖和RF探針組件以及用于光子探測(cè)的配置。

預(yù)置電學(xué)接口:系統(tǒng)為用戶(hù)提供了預(yù)置低頻電測(cè)量和額外溫度計(jì)安裝的直流電學(xué)通道。

擴(kuò)展接口選件:通過(guò)側(cè)面板可將RF、光纖、氣體和額外的直流通道引入樣品腔。

四周和頂部的窗口方便將各方向的光路引入樣品腔。

靈活的光路方案:適應(yīng)各種測(cè)量光路,如透射、側(cè)反射和頂部顯微鏡。

超高的收集效率:提供高NA與近工作距離選件。

光學(xué)材質(zhì):可以輕松更換各種波長(zhǎng)和實(shí)驗(yàn)需求的窗口。

性能表現(xiàn)

多個(gè)**和獨(dú)特技術(shù)相結(jié)合,在不犧牲*低溫度和制冷功率的基礎(chǔ)上優(yōu)化了熱穩(wěn)定性和震動(dòng)穩(wěn)定性。

實(shí)現(xiàn)*低溫度:采用特有的材料和熱阻尼技術(shù),使系統(tǒng)在給定的配置下達(dá)到盡可能低的溫度。

滿(mǎn)足震動(dòng)敏感測(cè)量:采用**的減震技術(shù),隔絕冷頭震動(dòng)的同時(shí)對(duì)樣品采用剛性支撐結(jié)構(gòu),實(shí)現(xiàn)納米級(jí)的超低震動(dòng)。

全溫區(qū)保持樣品的光路準(zhǔn)確性:采用膨脹系數(shù)抵消式結(jié)構(gòu),保證全溫區(qū)范圍內(nèi)樣品的超低位置漂移。

保證每一個(gè)溫度點(diǎn)的穩(wěn)定性:采用主動(dòng)與被動(dòng)參數(shù)控制技術(shù),使每一個(gè)溫度點(diǎn)的溫度波動(dòng)減小到傳統(tǒng)制冷機(jī)波動(dòng)的二十分之一。

CE認(rèn)證

系統(tǒng)是非常成熟的定型化產(chǎn)品,已取得CE認(rèn)證。

設(shè)備型號(hào)

標(biāo)準(zhǔn)恒溫器系列

■ Cryostation® S50低溫平臺(tái)

S50是新型超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器的基本型號(hào)。該恒溫器具有傳統(tǒng)恒溫器不可比擬的優(yōu)勢(shì)。S50樣品腔具有5個(gè)光學(xué)窗口,可配置近工作距離選件。該型號(hào)是標(biāo)準(zhǔn)恒溫器系列中選件兼容性*廣泛的恒溫器,可與多種選件或定制零件進(jìn)行搭配以滿(mǎn)足各種實(shí)驗(yàn)需求。

Cryostation® S50

超級(jí)震動(dòng)穩(wěn)定性:樣品臺(tái)震動(dòng)的峰-峰值<5nm,有效值(均方根RMS)~0.25nm。

優(yōu)異的溫度性能:大的控溫范圍,3.2K-350K (無(wú)熱負(fù)載時(shí)*低<3K);溫度穩(wěn)定性**,在極限低溫時(shí)溫度波動(dòng)始終小于10mK(峰-峰值);超快變溫速度,Cool down ~2 小時(shí)(如果配置復(fù)雜,可能長(zhǎng)于2小時(shí))。

■ Cryostation® S100低溫平臺(tái)

S100是Cryostation®系列恒溫器為滿(mǎn)足較為復(fù)雜的實(shí)驗(yàn)方案而推出的中型樣品腔型號(hào)。S100具有較大的樣品空間,可滿(mǎn)足更多的線(xiàn)路或高頻線(xiàn)路接入,可集成橫向的鏡頭,滿(mǎn)足橫向共聚焦光路的搭建,可集成多組位移器。該型號(hào)是標(biāo)準(zhǔn)恒溫器系列中定制化方案更靈活的型號(hào),可以滿(mǎn)足配置較為復(fù)雜的低溫實(shí)驗(yàn)。

Cryostation® S100

模塊化的接線(xiàn)面板:在樣品腔中提供模塊化的低溫接線(xiàn)面板,接線(xiàn)模塊可滿(mǎn)足多種接線(xiàn)類(lèi)型(交、直流、射頻、光纖),大大提升了實(shí)驗(yàn)的靈活性。

樣品空間:S100的樣品腔尺寸介于S50和S200之間,兼顧降溫時(shí)間和樣品腔空間,在盡量小的影響降溫速率前提下盡可能的增加了樣品空間,使用戶(hù)可以設(shè)計(jì)較為復(fù)雜的光學(xué)實(shí)驗(yàn)。

光學(xué)靈活性:更大的空間意味著可以容納更多的光學(xué)元件,樣品位置也可以有更多的選擇。

■ Cryostation® S200低溫平臺(tái)

為了使用戶(hù)有更大的空間進(jìn)行復(fù)雜低溫試驗(yàn)的設(shè)計(jì),Montana Instruments研發(fā)了大型系統(tǒng)Cryostation® S200。該型號(hào)是標(biāo)準(zhǔn)恒溫器系列中的**型號(hào)。直徑196mm的樣品腔使用戶(hù)可以在低溫區(qū)域搭建復(fù)雜的光路。

Cryostation®S200

樣品臺(tái):低溫樣品臺(tái)為帶螺孔的標(biāo)準(zhǔn)光學(xué)面包板,可以任意設(shè)計(jì)光路。

光學(xué)靈活性:9個(gè)光學(xué)窗口,支持多根光纖接入。

樣品空間:Ф196 mm樣品腔可滿(mǎn)足各種光學(xué)實(shí)驗(yàn)需求。


集成式系統(tǒng)

■ CRYO-OPTIC®物鏡集成系統(tǒng)

CRYO-OPTIC®系統(tǒng)將光學(xué)物鏡集成到Cryostation的樣品腔中,在低溫下實(shí)現(xiàn)超穩(wěn)定、高質(zhì)量的大數(shù)值孔徑成像。CRYO-OPTIC®系統(tǒng)的設(shè)計(jì)消除了在低溫設(shè)備中使用高倍物鏡時(shí)所面臨的對(duì)準(zhǔn)和漂移問(wèn)題。

系統(tǒng)對(duì)配件和選件具有良好兼容性,允許用戶(hù)自定義設(shè)備的具體配置以滿(mǎn)足獨(dú)特的實(shí)驗(yàn)需求??蛇x內(nèi)置的XYZ納米位移器用于樣品定位和聚焦,可選快速變溫樣品臺(tái),用于樣品的快速變溫控制。

性能優(yōu)勢(shì)

★ **技術(shù)允許集成物鏡保持在室溫,確保超穩(wěn)定的位置和焦點(diǎn)控制。

★ 對(duì)高倍物鏡和樣品的溫度進(jìn)行主動(dòng)控制,使其溫度穩(wěn)定性在10 mK 以?xún)?nèi),超高的穩(wěn)定性使其在較小的溫度變化后無(wú)需重新聚焦。

★ 通過(guò)將物鏡從恒溫器和實(shí)驗(yàn)室環(huán)境中分離出來(lái),獨(dú)立控制,系統(tǒng)達(dá)到穩(wěn)定測(cè)量條件所需的時(shí)間大大減少。

Cryostation S50 - CO(豎直物鏡集成系統(tǒng))

該方案是為豎直共焦顯微鏡設(shè)計(jì)的,同時(shí)系統(tǒng)具有側(cè)面光學(xué)窗口,允許用戶(hù)看到樣品和焦距的大致調(diào)節(jié)。

■ Cryostation S100 – CO(水平物鏡集成系統(tǒng))

S100 - CO的水平安裝方案可與其他光學(xué)測(cè)量系統(tǒng)無(wú)縫銜接,允許快速、方便的更換樣品。獨(dú)特的輻射屏蔽層設(shè)計(jì)保證更換樣品的同時(shí)不改變物鏡的位置,確保物鏡始終處于光路的**位置。

Cryostation S200 – CO(定制物鏡集成系統(tǒng))

Cryostation S200可以實(shí)現(xiàn)定制化的物鏡集成。物鏡水平安裝,與低溫面包板組成自由光路,可通過(guò)壓電位移器實(shí)現(xiàn)光路的精準(zhǔn)調(diào)節(jié)。

MAGNETO-OPTIC(MO)磁體集成系統(tǒng)

MAGNETO-OPTIC直接將磁體集成到低溫樣品腔中。這一附加模塊不影響系統(tǒng)本身的穩(wěn)定性,磁體系統(tǒng)具有完全自動(dòng)化的控制系統(tǒng)。系統(tǒng)可兼容多種選件和配件,包括內(nèi)置壓電位移器等。用戶(hù)可選擇不同配置以滿(mǎn)足獨(dú)特的實(shí)驗(yàn)需求。

性能優(yōu)勢(shì)

★ 設(shè)備安裝簡(jiǎn)單,具有獨(dú)特的設(shè)計(jì),保證便捷的樣品更換和光路便捷性。

自動(dòng)退磁,采用震蕩歸零的方式減小電流,以消除磁場(chǎng)設(shè)置為零時(shí)的剩余磁場(chǎng)。

完備系統(tǒng),系統(tǒng)包括校準(zhǔn)霍爾探頭、電源和循環(huán)冷卻系統(tǒng),用戶(hù)無(wú)需額外輔助設(shè)備。

CryoMOKE低溫磁光克爾集成系統(tǒng)

為了滿(mǎn)足用戶(hù)變溫MOKE的測(cè)量需求,該系統(tǒng)結(jié)合了英國(guó)Durham 公司的NanoMOKE3系統(tǒng)。該集成系統(tǒng)利用MAGNETO-OPTIC的靈活性與NanoMOKE3的強(qiáng)大功能為用戶(hù)打造了高性能的低溫磁光克爾測(cè)量平臺(tái)。

CryoFMR低溫鐵磁共振集成系統(tǒng)

Montana Instruments 為用戶(hù)提供高精度的低溫鐵磁共振集成系統(tǒng)。使得樣品可以在不同溫度、光照情況下進(jìn)行鐵磁共振實(shí)驗(yàn),方便研究樣品在光激發(fā)狀態(tài)下的磁學(xué)特性。該系統(tǒng)配備N(xiāo)anOsc Instruments AB公司的高精度鐵磁共振測(cè)試儀,并且操作簡(jiǎn)單。

Cryo Mossbauer低溫穆斯堡爾集成系統(tǒng)

Cryo Mossbauer系統(tǒng)提供完整的集成式變溫透射穆斯堡爾測(cè)量方案。Montana Instruments 采用了MS96光譜儀與Montana恒溫器的用戶(hù)友好型集成方案,設(shè)備簡(jiǎn)單易用。兩個(gè)領(lǐng)域的全球**廠商確保了設(shè)備的可靠性。

部分應(yīng)用案例

■ 無(wú)褶皺超平石墨烯的變溫拉曼測(cè)量

南京大學(xué)高力波教授、奚嘯翔教授等多個(gè)課題組合作,采用質(zhì)子輔助的CVD方法生長(zhǎng)制備出了無(wú)褶皺的超平石墨烯。該方法成功解決了傳統(tǒng)CVD制備石墨烯過(guò)程中由于石墨烯與基質(zhì)材料強(qiáng)耦合作用而形成的褶皺,這為石墨烯在二維電子器件等領(lǐng)域的應(yīng)用掃除了一大障礙。文章表明,在質(zhì)子輔助的CVD制備方法中,質(zhì)子能夠滲透石墨烯,對(duì)石墨烯和襯底之間的范德瓦爾斯相互作用進(jìn)行去耦合,使褶皺完全消失。該方法還可以對(duì)傳統(tǒng)CVD制備過(guò)程中產(chǎn)生的褶皺進(jìn)行很大程度的去除。此外,通過(guò)新方法制備的超平石墨烯材料,不僅具有優(yōu)異的清潔能力,還在測(cè)量中展示了室溫量子霍爾效應(yīng)。研究認(rèn)為,質(zhì)子輔助的CVD方法不僅能制備出高質(zhì)量的石墨烯,并且對(duì)制備其他種類(lèi)的納米材料具有普適性,為制備高質(zhì)量的二維材料提供了一種新途徑。相關(guān)成果發(fā)表在Nature。

值得一提的是,文章中對(duì)樣品進(jìn)行了高質(zhì)量的變溫Raman測(cè)量(南京大學(xué)物理學(xué)院奚嘯翔教授通過(guò)Montana Instruments公司生產(chǎn)的Cryostation®系列高性能恒溫器與普林斯頓光譜儀聯(lián)合測(cè)量完成。高質(zhì)量的數(shù)據(jù)表明了基于Cryostation系列恒溫器的變溫拉曼具有非常優(yōu)異且穩(wěn)定的性能。清晰的展示了不同制備與處理?xiàng)l件的石墨烯G峰和2D峰隨溫度變化的峰位移動(dòng)。揭示了石墨烯與襯底之間相互作用的強(qiáng)弱以及石墨烯受到的應(yīng)力大小。

目前由Montana Instruments公司與Princeton Instruments聯(lián)合開(kāi)發(fā)的超精細(xì)變溫顯微拉曼系統(tǒng)——microReveal RAMAN已經(jīng)正式向全球銷(xiāo)售。該集成式系統(tǒng)實(shí)現(xiàn)了變溫拉曼的優(yōu)化測(cè)量,省去了自己搭建變溫拉曼的繁瑣過(guò)程。該系統(tǒng)根據(jù)不同的應(yīng)用可以實(shí)現(xiàn)4K-350K(500K可選)大溫區(qū)范圍內(nèi)的拉曼光譜與成像、熒光光譜與成像、吸收光譜、電學(xué)測(cè)量和光電輸運(yùn)測(cè)量等多種功能。

參考文獻(xiàn):

[1] Yuan, G., Lin, D., Wang, Y. et al. Proton-assisted growth of ultra-flat graphene films. Nature 577, 204–208 (2020)


■ 金剛石NV色心研究

金剛石NV色心(Nitrogen-vacancy defect centers) 近年來(lái)在科研界被高度關(guān)注。NV色心獨(dú)特且穩(wěn)定的光學(xué)特性使其擁有廣泛的應(yīng)用前景。在量子信息領(lǐng)域,NV色心可以作為單光子源用于量子計(jì)算。NV色心作為具有量子敏感度的傳感設(shè)備,還可應(yīng)用于納米尺度磁場(chǎng)、電場(chǎng)、溫度、壓力的探測(cè)。在生物學(xué)領(lǐng)域,NV色心是**的生物標(biāo)識(shí)物,具有光學(xué)性能穩(wěn)定,細(xì)胞毒性低的特點(diǎn)。

Montana Instruments開(kāi)發(fā)的低溫恒溫器專(zhuān)門(mén)針對(duì)NV色心領(lǐng)域研究需要而進(jìn)行優(yōu)化,掃除了科研人員進(jìn)入NV色心研究領(lǐng)域的障礙。以下是低溫(4K)NV色心研究的實(shí)驗(yàn)方案舉例。

1. 總體NV色心信號(hào)收集實(shí)驗(yàn)

將磁性樣品覆蓋在表面具有較多的NV色心的塊體金剛石襯底上。這個(gè)NV色心表面層通常由離子注入或在金剛石表面合成富氮表面層來(lái)實(shí)現(xiàn)。通常采用532nm的激光激發(fā)NV色心到激發(fā)態(tài),并在630-800nm波長(zhǎng)范圍收集熒光信號(hào)。同時(shí)利用微波信號(hào)激發(fā)和探測(cè)NV色心的自旋態(tài)(ESR)。熒光信號(hào)由二維的CCD探測(cè)陣列收集成像并與樣品相對(duì)應(yīng)。與單個(gè)NV色心的研究不同,該實(shí)驗(yàn)方案采用大工作距離獲得大視野范圍的成像,從而實(shí)現(xiàn)大面積信號(hào)的采集。

CCD與顯微鏡成像

2. 單個(gè)NV色心研究:樣品表面的納米金剛石

納米金剛石的單個(gè)NV色心探測(cè)可以通過(guò)共聚焦顯微技術(shù)來(lái)實(shí)現(xiàn)。實(shí)驗(yàn)裝置包括三維低溫納米位移臺(tái),Z方向可以精準(zhǔn)調(diào)整樣品到焦平面,XY可以對(duì)樣品表面進(jìn)行掃描。Montana Instruments**設(shè)計(jì)方案可以采用高數(shù)值孔徑物鏡對(duì)4K的樣品中的單個(gè)NV色心進(jìn)行測(cè)量。系統(tǒng)的收集效率高、光斑直徑小,輕松聚焦單個(gè)NV色心。采用532nm激光激發(fā),對(duì)630nm-800nm范圍的熒光信號(hào)進(jìn)行采集。采用可調(diào)的微波信號(hào)對(duì)NV色心的自旋態(tài)進(jìn)行激發(fā),通過(guò)熒光信號(hào)的峰值位移來(lái)確定其自旋態(tài)。為了研究感興趣的區(qū)域,通常將金剛石粉末(20-30nm)均勻的撒在樣品表面,然后使用三維納米位移臺(tái)來(lái)掃描樣品并且對(duì)特定NV色心進(jìn)行測(cè)量。并且可以通過(guò)單個(gè)NV色心實(shí)現(xiàn)在較大溫度范圍內(nèi)對(duì)樣品的性質(zhì)進(jìn)行觀測(cè)。

掃描共聚焦顯微鏡

Tokura課題組成功的運(yùn)用此技術(shù)研究了FeGe樣品中的磁渦旋結(jié)構(gòu)。實(shí)驗(yàn)細(xì)節(jié)請(qǐng)參考:

Using NV-Center Optically Detected Magnetic Resonance (ODMR) as a Probe for Local Magnetic Dynamics in Transition Metals

3. 掃描探針量子探測(cè)器(例如,掃描磁力顯微鏡)

我們將一個(gè)NV色心固定在掃描探針顯微鏡的探針末端??梢酝ㄟ^(guò)在針尖上“粘貼”納米金剛石,或采用納米壓印與O2刻蝕技術(shù)將塊體金剛石加工成尖端再用N-14注入來(lái)實(shí)現(xiàn)NV色心,現(xiàn)在甚至已經(jīng)有商業(yè)化的針尖。采用共聚焦顯微鏡將激發(fā)光聚焦在掃描探針的NV色心上。樣品可以通過(guò)低溫納米位移臺(tái)進(jìn)行精確掃描。這樣便實(shí)現(xiàn)了對(duì)樣品表面的納米級(jí)精度大范圍成像測(cè)量。該技術(shù)理論上可以對(duì)多種與NV色心熒光相關(guān)的特性進(jìn)行高精度顯微學(xué)測(cè)量。

掃描探針顯微鏡

Jayich課題組 (UCSB)運(yùn)用這一技術(shù)在BaFe2(As0.7P0.3)2 超導(dǎo)材料的轉(zhuǎn)變溫度附近(30K)成功觀測(cè)到了vortices。這一技術(shù)在研究材料低溫下的新奇性質(zhì)方面前景廣闊。更多細(xì)節(jié)請(qǐng)參考:

Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor.


■ 高性能低溫恒溫器在量子計(jì)算中的應(yīng)用

Cryostation®低溫恒溫器系統(tǒng)可為量子計(jì)算相關(guān)研究提供多種解決方案,豐富的可選配置與配件可以滿(mǎn)足各種實(shí)驗(yàn)的需求,諸如離子阱、超導(dǎo)環(huán)、NV色心的高數(shù)值孔徑熒光觀測(cè)等。根據(jù)具體實(shí)驗(yàn)需求Montana Instruments可以提供*適合的配置方案。

量子計(jì)算實(shí)驗(yàn)案例:RF離子阱

配置方案:高數(shù)值孔徑熒光讀出、多光學(xué)通道用于激光制冷、RF+DC電學(xué)通道用于制造囚禁勢(shì)阱。

作為該實(shí)驗(yàn)方案的核心,離子阱量子計(jì)算包括N個(gè)囚禁離子。離子可以被囚禁在泡利(RF)阱或彭寧(磁場(chǎng))阱中,每個(gè)囚禁離子具有兩個(gè)態(tài)或亞穩(wěn)態(tài)。這里我們簡(jiǎn)單討論泡利阱的情況,實(shí)驗(yàn)上泡利阱是通過(guò)在樣品上印制一組具有特殊幾何形狀的RF電極產(chǎn)生限制電勢(shì)實(shí)現(xiàn)的。在設(shè)計(jì)好勢(shì)阱后我們通過(guò)激光燒蝕襯底產(chǎn)生一個(gè)待囚禁的離子(常用137Yb+),采用多普勒或Sisyphus冷卻方案用激光將高度激發(fā)狀態(tài)的離子冷卻至量子態(tài)。*后再將離子導(dǎo)入精心設(shè)計(jì)的勢(shì)阱中。

待離子進(jìn)入勢(shì)阱中,將他們?cè)诳臻g上隔開(kāi)幾微米的距離,每個(gè)離子代表一個(gè)量子比特。量子比特通過(guò)庫(kù)倫相互作用影響量子比特的集體震蕩來(lái)實(shí)現(xiàn)耦合。每一個(gè)量子比特都通過(guò)與庫(kù)倫勢(shì)的“平行”或“反平行”將自己的局部態(tài)編碼進(jìn)集體震動(dòng)。這樣每一個(gè)在一維鏈上的量子比特都實(shí)現(xiàn)了與其他每個(gè)量子比特的耦合。

量子計(jì)算的通用“門(mén)”操作(CROT, SWAP以及內(nèi)部量子比特態(tài)的任意翻轉(zhuǎn))可以通過(guò)對(duì)量子比特光激發(fā)來(lái)實(shí)現(xiàn)。對(duì)于137YB+離子鏈,**波長(zhǎng)為355nm。激光源的穩(wěn)定性尤為重要,激發(fā)頻率與電子的共振頻率要精確匹配(10KHz或更好),以防止其他臨近態(tài)的激發(fā)。紫外激光由于具有合適的波長(zhǎng)與**的頻率穩(wěn)定性常被用于半導(dǎo)體材料的維納加工,現(xiàn)在也成為量子計(jì)算的上佳選擇。

量子比特在經(jīng)過(guò)一系列量子算法的門(mén)操作后的量子態(tài)可以被讀出。囚禁離子的量子態(tài)讀出是通過(guò)測(cè)量與量子態(tài)相關(guān)的熒光實(shí)現(xiàn)的。目前的研究通常利用高數(shù)值孔徑的顯微鏡可以實(shí)現(xiàn)10%左右的收集效率。未來(lái)的量子計(jì)算可能會(huì)通過(guò)集成光學(xué)微腔的方案來(lái)提高熒光光子的收集效率,預(yù)計(jì)可以大于50%。該集成技術(shù)也可以推動(dòng)可拓展與重構(gòu)的量子計(jì)算電路發(fā)展。

總的來(lái)說(shuō),設(shè)計(jì)和操縱一個(gè)可靠的離子阱量子計(jì)算機(jī)需要1、穩(wěn)定的激光源與精準(zhǔn)的頻率控制。2、有效且控制良好的RF電勢(shì)來(lái)定位與控制囚禁離子。3、數(shù)字控制的空間分辨率很高的脈沖激光來(lái)制備、測(cè)量、操縱量子比特。4、量子態(tài)的可靠探測(cè)與讀出。

Montana Instruments與科研人員共同設(shè)計(jì)的離子阱量子計(jì)算機(jī)

MI恒溫器與集成式單光子探測(cè)器有望提高離子阱的量子態(tài)讀出

參考文獻(xiàn):

[1] ohnson, K. G. et al. Active Stabilization of Ion Trap Radiofrequency Potentials. Review of Scientific Instruments 87, 53110 (2016).

[2] Brown, K. R., Kim, J. & Monroe, C. Co-Designing a Scalable Quantum Computer with Trapped Atomic Ions. npj Quantum Information 16034 (2016).

[3] Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

[4] Steane, A. M. The Ion Trap Quantum Information Processor. Applied Physics B: Lasers and Optics 64, 623–643 (1997).

[5] Faraz Najafi et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. commun,6:5873, 2015


■ 高性能低溫恒溫器在自旋電子學(xué)中的應(yīng)用

科研中MOKE*常用來(lái)表征材料的電子和磁學(xué)特征,例如磁疇結(jié)構(gòu)、自旋態(tài)密度、磁相變動(dòng)力學(xué)。在高質(zhì)量納米結(jié)構(gòu)和2D材料中**的實(shí)驗(yàn)進(jìn)展表明,有望在集成的光子或自旋電子器件中利用磁光效應(yīng)在納米尺度上加強(qiáng)對(duì)光的控制。

MOKE實(shí)驗(yàn)需要靈活的光路與電學(xué)通道以及磁場(chǎng)環(huán)境。樣品需要一個(gè)超穩(wěn)定的低溫環(huán)境并且能夠調(diào)整配置以適應(yīng)實(shí)驗(yàn)需求的多種幾何光路。Cryostation基礎(chǔ)系統(tǒng)與成熟的選件庫(kù)可為MOKE提供多種解決方案。通過(guò)不同的搭配組合我們可以輕松實(shí)現(xiàn)磁光克爾效應(yīng)、光磁測(cè)量、光致發(fā)光、偏振分辨測(cè)量、自旋輸運(yùn)與動(dòng)力學(xué)、磁疇壁移動(dòng)、磁阻研究、電學(xué)和高頻測(cè)量、輸運(yùn)性質(zhì)等方面的研究。以下是部分低溫磁光克爾效應(yīng)實(shí)驗(yàn)舉例:

1. 縱向磁光克爾效應(yīng)

在縱向MOKE的幾何光路中,磁場(chǎng)與樣品表面平行,樣品中的磁疇平行于磁場(chǎng)方向。激光光源通過(guò)偏振器實(shí)現(xiàn)設(shè)定的偏振。光線(xiàn)通過(guò)物鏡聚焦在樣品感興趣的區(qū)域上。入射光線(xiàn)與樣品的磁疇發(fā)生相互作用使得反射光線(xiàn)偏振方向改變。偏振方向改變的幅度與局部磁化的強(qiáng)度成比例。通過(guò)儀器接收并分析反射光線(xiàn)的克爾轉(zhuǎn)角就可以得到局部磁矩的方向和強(qiáng)度信息。這種測(cè)量方案所需的樣品環(huán)境可以在集成了雙極性電磁鐵的低溫恒溫器中來(lái)實(shí)現(xiàn),例如Cryostation與Magneto-Optic。

利用縱向克爾效應(yīng)的宏觀磁疇圖像測(cè)量方案

2. 極向磁光克爾效應(yīng)

在極向克爾幾何光路中,磁場(chǎng)沿樣品表面的發(fā)現(xiàn)方向(適用于面外易磁化軸樣品)。此時(shí)磁化方向垂直于樣品表面,為了**化的收集信號(hào),入射激光需要垂直照射在樣品表面。與縱向克爾類(lèi)似,入射激光的偏振方向在被磁性樣品表面反射時(shí)會(huì)發(fā)生輕微的偏轉(zhuǎn)。偏轉(zhuǎn)的程度與局部磁疇的強(qiáng)度和方向有關(guān)。在Cryostation與Magneto-Optic裝置中,與縱向克爾相比,樣品旋轉(zhuǎn)了90°,并且在磁極中間引入了一個(gè)小的反射鏡來(lái)實(shí)現(xiàn)入射光線(xiàn)與磁場(chǎng)的平行以及與樣品表面的垂直。

極向MOKE宏觀磁疇測(cè)量方案

3. 時(shí)間分辨MOKE

可以用時(shí)間分辨(瞬態(tài))的MOKE對(duì)脈沖磁場(chǎng)和脈沖電場(chǎng)驅(qū)動(dòng)的磁疇壁移動(dòng)進(jìn)行動(dòng)力學(xué)研究。舉例來(lái)說(shuō),可以對(duì)用于磁帶存儲(chǔ)器研究的磁性納米線(xiàn)中的磁疇壁移動(dòng)進(jìn)行測(cè)量。磁疇壁通常在預(yù)定的位置有電脈沖或磁脈沖注入納米線(xiàn)。利用MOKE信號(hào)對(duì)納米線(xiàn)的局部進(jìn)行探測(cè),空間分辨率可優(yōu)于1um,時(shí)間分辨率可達(dá)到150fs。如果t=0時(shí)刻對(duì)應(yīng)于疇壁注入,對(duì)指定區(qū)域沿納米線(xiàn)進(jìn)行延時(shí)脈沖掃描觀察MOKE信號(hào)的變化。MOKE信號(hào)的變化對(duì)應(yīng)磁疇壁移動(dòng)所引起的磁性翻轉(zhuǎn)。通過(guò)測(cè)量納米線(xiàn)不同位置MOKE信號(hào)的變化時(shí)間可以計(jì)算出疇壁的移動(dòng)速度。

時(shí)間分辨MOKE也可以用于研究自旋“群體”的壽命。利用極化的泵浦光對(duì)感興趣的材料進(jìn)行自旋激發(fā)。利用探測(cè)光進(jìn)行延時(shí)掃描,MOKE信號(hào)的強(qiáng)弱可以計(jì)算自旋“群體”密度。自旋的“壽命”可以通過(guò)觀測(cè)自旋“群體”的密度來(lái)計(jì)算。Kawakami課題組(Ohio State University)利用該方法對(duì)過(guò)渡族金屬二硫化物WS2在低溫(<6K)下進(jìn)行了時(shí)間分辨克爾轉(zhuǎn)角測(cè)量(TRKR)。對(duì)比TRKR信號(hào)與顯微熒光,研究者發(fā)現(xiàn)強(qiáng)激子發(fā)光與高自旋密度之間的一種意料之外的反相關(guān)關(guān)系。這一發(fā)現(xiàn)為短時(shí)激子自旋角動(dòng)量到長(zhǎng)時(shí)導(dǎo)電電子自旋態(tài)轉(zhuǎn)化提供了新的見(jiàn)解。

時(shí)間分辨克爾效應(yīng)的原理與裝置圖

4. 強(qiáng)磁場(chǎng)(>1T)MOKE

華盛頓大學(xué)的Xu和Cobden 利用7T的超導(dǎo)磁體與低溫設(shè)備,采用法拉第幾何光路測(cè)量磁場(chǎng)對(duì)光致發(fā)光極化的影響對(duì)單層WSe2進(jìn)行了研究。更多信息請(qǐng)閱讀:Magnetic Control of Valley Pseudospin: A Story of Symmetry.

參考文獻(xiàn):

[1] Durham Magneto Optics Ltd & Beguivin, A. Characterization of the Montana Instruments Cryostation C2 for low temperature Magneto-Optical Kerr Effect measurements using the NanoMOKE 3.

[2] Bushong, E. J. et al. Imaging Spin Dynamics in Monolayer WS2 by Time-Resolved Kerr Rotation Microscopy. arXiv:1602.03568 [cond-mat] (2016).

[3] Aivazian, G. et al. Magnetic Control of Valley Pseudospin in Monolayer WSe2. Nature Physics 11, 148–152 (2015).

[4] Henn, T. et al. Ultrafast supercontinuum fiber-laser based pump-probe scanning MOKE microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. Review of Scientific Instruments 84, 123903 (2013).

發(fā)表文章

Montana Cryostation 用戶(hù)發(fā)表文章選集(2012-2020)。分類(lèi)僅供參考,可能存在偏差,文章學(xué)術(shù)價(jià)值與排序無(wú)關(guān)。

■ 二維材料、激子

  1. Nature Physics; Excitonic Luminescent Up-Conversion in a 2D Semiconductor

  2. Nature Physics; Spin–phonon interactions in silicon carbide addressed by Gaussian acoustics

  3. Nature Nanotechnology; Probing dark excitons in atomically thin semiconductors via near-field coupling to surface plasmon polaritons

  4. Nature Nanotechnology; Electrical control of charged carriers and excitons in atomically thin materials

  5. Nature Communications; Cascaded emission of single photons from the biexciton in monolayered WSe2

  6. Nano Letters; Quantifying remote heating from propagating surface plasmon polaritons

  7. Nano Letters; Giant Enhancement of Defect-Bound Exciton Luminescence and Suppression of Band-Edge Luminescence in Monolayer WSe2–Ag Plasmonic Hybrid Structures

  8. Physical Review Letters; Large Excitonic Reflectivity of Monolayer MoSe2 Encapsulated in Hexagonal Boron Nitride.

  9. ACS Nano; Photoluminescent Quantum Interference in a van der Waals Magnet Preserved by Symmetry Breaking

  10. ACS Photonics; Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors

  11. Physical Review B; Role of strain on the coherent properties of GaAs excitons and biexcitons

  12. Physical Review B; Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

  13. Physical Review Materials; Laser Annealing for Radiatively Broadened MoSe2 grown by Chemical Vapor Deposition

  14. Science Advances; Persistent Optical Gating of a Topological Insulator

  15. Science Advances; Optical generation of high carrier densities in 2D semiconductor heterobilayers

■ 范德瓦耳斯異質(zhì)結(jié)

  1. Nature Communications; Observation of Long-Lived Interlayer Excitons in Monolayer MoSe2-WSe2 Heterostructures

  2. Nano Letters; Single Defect Light-Emitting Diode in a van der Waals Heterostructure

  3. Nano Letters; Interlayer Exciton Optoelectronics in a 2D Heterostructure p-n junction

  4. Nano Letters; Nanocavity Integrated van der Waals Heterostructure Light-Emitting Tunneling Diode

  5. Nano Letters; Unusual Exciton-Phonon Interactions at van der Waals Engineered Interfaces

  6. Physical Review Letters; Controlling excitons in an atomically thin membrane with a mirror

■ 自旋谷

  1. Science; Valley-Polarized Exciton Dynamics in a 2D Semiconductor Heterostructure

  2. Nature Physics; Magnetic Control of Valley Pseudospin in Monolayer WSe2

  3. Nature Communications; Directional Interlayer Spin-Valley Transfer in 2D Heterostructures

  4. Nature Communications; Coulomb-bound four- and five-particle valleytronic states in an atomically-thin semiconductor.

  5. Science Advances; Observation of ultralong valley lifetime in WSe2/MoS2heterostructures

■ 石墨烯

  1. Nature; Proton-assisted growth of ultra-flat graphene films

  2. Nature Physics; Photo-Nernst Current in Graphene

  3. ACS Nano; Lithographically Patterned Functional Polymer–Graphene Hybrids for Nanoscale Electronics

  4. Applied Physics Letters; Direct and parametric synchronization of a graphene self-oscillator

■ 光力研究

  1. Nature Communications; Nonlinear cavity optomechanics with nanomechanical thermal fluctuations

  2. Science; Quantum correlations from a room-temperature optomechanical cavity

  3. Physical Review X; Single-Crystal Diamond Nanobeam Waveguide Optomechanics

  4. Physical Review Letters; Optomechanical Quantum Control of a Nitrogen-Vacancy Center in Diamond

■ 超導(dǎo)材料相關(guān)測(cè)量

  1. Scientific Reports; Imprinting superconducting vortex footsteps in a magnetic layer

  2. Scientific Reports; Triode for Magnetic Flux Quanta

  3. Physical Review B; Magnetic flux penetration in Nb superconducting films with lithographically defined micro-indentations

  4. Physical Review B; Impurity scattering effects on the superconducting properties and the tetragonal-to-orthorhombic phase transition in FeSe

  5. Physical Review B; Crossing fields in thin films of isotropic superconductors

  6. Physical Review B; Flux penetration in a superconducting film partially capped with a conducting layer

■ 電荷密度波

  1. Nature Nanotechnology; Strongly enhanced charge-density-wave order in monolayer NbSe2

  2. Nature Communications; Patterns and driving forces of dimensionality-dependent chargedensity waves in 2H-type transition metal dichalcogenides

  3. Arxiv; Two Phonon Interactions and Charge Density Wavein Single Crystalline VSe2 Probed by Raman Spectroscopy

■ 磁學(xué)測(cè)量相關(guān)

  1. Nature; Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

  2. Nature; Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2

  3. Science;Measuring magnetic field texture in correlated electron systems under extreme conditions

  4. Nature Physics; Ligand-field helical luminescence in a 2D ferromagnetic insulator

  5. Nature Nanotechnology; Scanned probe imaging of nanoscale magnetism at cryogenic temperatures with a single-spin quantum sensor

  6. Nature Nanotechnology; Electrical control of 2D magnetism in bilayer CrI3

  7. Nature Communications; Local dynamics of topological magnetic defects in the itinerant helimagnet FeGe

  8. Nature Communications; Spin transfer torque driven higher-order propagating spin waves in nano-contact magnetic tunnel junctions

  9. PNAS; Local optical control of ferromagnetism and chemical potential in a topological insulator

  10. Scientific Reports; Spin noise explores local magnetic fields in a semiconductor

  11. 2D Materials; Imaging Spin Dynamics in Monolayer WS2 by Time-Resolved Kerr Rotation Microscopy

  12. Physical Review B; Upper critical fields in Ba2Ti2Fe2As4O single crystals: Evidence for dominant Pauli paramagnetic effect

  13. Journal of Applied Physics; Thickness- and temperature-dependent magnetodynamic properties of yttrium iron garnet thin films

  14. IOP Superconductor Science and Technology; Transport characterization and pinning analysis of BaFe1.9Ni0.1As2.05 thin films

  15. Review of Scientific Instruments; Scanning SQUID microscopy in a cryogen-free cooler

■ 量子存儲(chǔ)

  1. Nature Communications; Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

  2. Physical Review X; A 10-qubit solid-state spin register with quantum memory up to one minute

  3. Physical Review Letters; Coherent spin control at the quantum level in an ensemble-based optical memory

  4. Physical Review Letters: Solid state source of non-classical photon pairs with embedded multimode quantum memory

  5. Physical Review A; A spectral hole memory for light at the single photon level

  6. Physical Review A; Towards highly multimode optical quantum memory for quantum repeaters

  7. New Journal of Physics; Storage of up-converted telecom photons in a doped crystal

  8. New Journal of Physics; Cavity-enhanced storage in an optical spin-wave memory

  9. New Journal of Physics; Multiplexed on-demand storage of polarization qubits in a crystal

  10. AIP Conference Proceedings; Realization of the revival of silenced echo (ROSE) quantum memory scheme in orthogonal geometry

■ 量子點(diǎn)散射

  1. Nature Photonics; All-optical coherent control of vacuum Rabi oscillations

  2. Nature Communications; Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission

  3. Physical Review Letters; Field-Field and Photon-Photon Correlations of Light Scattered by Two Remote Two-Level InAs Quantum Dots on the Same Substrate

  4. Physical Review B; Coherent versus Incoherent Light Scattering from a Quantum Dot

  5. Physical Review B; Bichromatic Resonant Light Scattering from a Quantum Dot

  6. Physical Review B; Two-Color Photon Correlations of the Light Scattered by a Quantum Dot

  7. Physical Review A; Resonant light scattering of a laser frequency comb by a quantum dot

  8. Advanced Optical Materials; Localized all-optical control of single semiconductor quantum dots through plasmon-polariton-induced screening

■ 量子阱

  1. Applied Physics Letters; Highly polarized photoluminescence and its dynamics in semipolar (2021) InGaN/GaN quantum well

  2. Applied Physics Letters; Impact of carrier localization on radiative recombination times in semipolar plane (2021)InGaN/GaN quantum wells

  3. Physica Status Solidi C; Optical properties and carrier dynamics in m-plane InGaN quantum wells

  4. Optical Materials Express; Influence of well width fluctuations on recombination properties in semipolar InGaN quantum wells studied by time- and spatially-resolved near-field photoluminescence

■ 量子信息、量子計(jì)算等

  1. Nature; Photonic quantum state transfer between a cold atomic gas and a crystal

  2. Nature; Deterministic delivery of remote entanglement on a quantum network

  3. Science; Probing Johnson noise and ballistic transport in normal metals with a single-spin qubit

  4. Science; Entanglement Distillation between Solid-State Quantum Network Nodes

  5. Nature Physics; Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system

  6. Nature Communications; Coherent Acoustic Control of a Single Silicon Vacancy Spin in Diamond

  7. Physical Review Letters; Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal

  8. Optics Express; Two-pulse photon echo area theorem in an optically dense medium

  9. AIP Conference Proceedings; Photon echo area theorem for Gaussian laser beams

  10. IEEE Xplore; Towards Millimeter-Wave Based Quantum Networks

■ 基礎(chǔ)量子力學(xué)研究

  1. Nature; Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

  2. Scientific Reports; Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis

■ 金剛石

  1. Nature Communications; Coherent control of a strongly driven silicon vacancy optical transition in diamond

  2. Physical Review X; Coupling a Surface Acoustic Wave to an Electron Spin in Diamond via a Dark State

  3. Physical Review Letters; Protecting a Solid-State Spin from Decoherence Using Dressed Spin States

  4. Physical Review Letters; Opticallly-driven Rabi oscillations and adiabatic passage of single electron spins in diamond

  5. Physical Review Letters; Holonomic quantum control by coherent optical excitation in diamond

  6. Physical Review A; Strain coupling of a mechanical resonator to a single quantum emitter in diamond

  7. CLEO; Lead-Related Quantum Emitters in Diamond

  8. Journal of Carbon Research; Fluorescence and Physico-Chemical Properties of Hydrogenated Detonation Nanodiamonds

■ 金剛石色心、量子點(diǎn)熒光、單光子發(fā)射等

  1. Nature Photonics; 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics

  2. Nature Communications; Optical charge state control of spin defects in 4H-SiC

  3. Nature Communications; Extremely rapid isotropic irradiation of nanoparticles with ions generated in situ by a nuclear reaction

  4. Nature Communications; Bright room temperature single photon source at telecom range in cubic silicon carbide

  5. Nature Communications; Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide

  6. Physical Review X; Quantum Interference of Electromechanically Stabilized Emitters in Nanophotonic Devices

  7. Physical Review Letters; Polarization-Dependent Interference of Coherent Scattering from Orthogonal Dipole Moments of a Resonantly Excited Quantum Dot

  8. Optics Express; Optical coherence of implanted silicon vacancy centers in thin diamond membranes

  9. Scientific Reports; Single-photon property characterization of 1.3?μm emissions from InAs/GaAs quantum dots using silicon avalanche photodiodes

  10. Scientific Reports; Combined atomic force microscopy and photoluminescence imaging to select single InAs/GaAs quantum dots for quantum photonic devices

  11. Physical Review B; Characterization of 171Yb3+: YVO4 for photonic quantum technologies

  12. Physical Review B; Characterization of optical and spin properties of single tin-vacancy centers in diamond nanopillars

  13. Optica; Two-photon interference from a bright single-photon source at telecom wavelengths

  14. Optica; Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

  15. Photonics; Scalable fabrication of single silicon vacancy defect arrays in silicon carbide using focused ion beam

  16. ACS Nano; Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission

  17. ACS Photonics; Towards bright and pure single photon emitters at 300 K based on GaN quantumdots on silicon

  18. CLEO; Characterization of the Local Charge Environment of a Single Quantum Dot via Resonance Fluorescence

  19. Journal of Applied Physics; Photoexcited carrier trapping and recombination at Fe centers in GaN

  20. Physical Review Applied; Single Self-Assembled InAs / GaAs Quantum Dots in Photonic Nanostructures: The Role of Nanofabrication

■ 微腔相關(guān)研究

  1. Nature Photonics; Quantum control of a spin qubit coupled to a photonic crystal cavity

  2. Nature Communications; All-optical polariton transistor

  3. Nature Communications; Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

  4. Nature Communications; Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities

  5. Nature Communications; Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

  6. Nano Letters; Strongly Cavity-Enhanced Spontaneous Emission from Silicon-Vacancy Centers in Diamond

  7. Physical Review Letters; Bosonic Condensation and Disorder-Induced Localization in a Flat Band

  8. Physical Review Letters; Ultrastable Silicon Cavity in a Continuously Operating Closed-Cycle Cryostat at 4 K

  9. Physical Review Letters; Probing a Dissipative Phase Transition via Dynamical Optical Hysteresis

  10. Physical Review Letters; Cavity-enhanced Raman emission from a single color center in a solid

  11. Optics Express; A High-Mechanical Bandwidth Fabry-Perot Fiber Cavity

  12. Physical Review B; Multidimensional coherent spectroscopy of a semiconductor microcavity

  13. Physical Review Applied; Engineering Phonon Leakage in Nanomechanical Resonators

  14. Applied Physics Letters; Controlled coupling of photonic crystal cavities using photochromic tuning

  15. Applied Physics Letters; Design and low-temperature characterization of a tunable microcavity for diamond-based quantum networks

■ 納米結(jié)構(gòu)、光子晶體、異質(zhì)結(jié)

  1. Physical Review Letters; Franson Interference Generated by a Two-Level System

  2. Nano Letters; Electrically Driven Hot-Carrier Generation and Above-threshold Light Emission in Plasmonic Tunnel Junctions

  3. ACS Photonics; Monolithic High-Contrast Grating Based Polariton Laser

  4. ACS Photonics; Epitaxial Aluminum-on-Sapphire Films as a Plasmonic Material Platform for Ultraviolet and Full Visible Spectral Regions

  5. CLEO; Diamond Optomechanical Crystals at Cryogenic Temperatures

  6. Laser Physics Letters; Observation and investigation of narrow optical transitions of 167Er3+ ions in femtosecond laser printed waveguides in 7LiYF4 crystal

  7. IOP Science Applied Physics Express; Single-step direct laser writing of halide perovskite microlasers

  8. Rapid Research Letters; Radiative Efficiency and Charge-Carrier Lifetimes and Diffusion Length in Polycrystalline CdSeTe Heterostructures

■ 發(fā)光材料

  1. Nature Communications; Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

  2. Applied Physics Letters; High quality factor single-crystal diamond mechanical resonators

  3. New Journal of Physics; Shifts of optical frequency references based on spectral-hole burning in Eu3+:Y2SiO5

  4. Journal of Luminescence; Evaluation of defects in cuprous oxide through exciton luminescence imaging

  5. SPIE; Tailoring of GaAs/GaAsSb core-shell structured nanowires for IR photodetector applications

  6. 2D Materials; Magneto-Elastic Coupling in a potential ferromagnetic 2D Atomic Crystal

■ 穆斯堡爾譜

  1. Carbon Letters; One-step microwave synthesis of magnetic biochars with sorption properties

  2. Inorganic Chemistry; Screw-Type Motion and Its Impact on Cooperativity in BaNa2Fe[VO4]2

■ 光伏、熱電、儲(chǔ)能材料

  1. Nano Letters; Photothermoelectric Detection of Gold Oxide Nonthermal Decomposition

  2. Scientific Reports; Optically induced metastability in Cu(In,Ga)Se2

  3. ACS Nano; Plasmonic heating in Au nanowires at low temperatures: The role of thermal boundary resistance

  4. ACS Nano; Room-Temperature Electrocaloric Effect in Layered Ferroelectric CuInP2S6 for Solid-State Refrigeration

  5. Physical Review B; Thermally Driven Long Range Magnon Spin Currents in Yttrium Iron Garnet due to Intrinsic Spin Seebeck Effect

  6. Applied Physics Letters; The impact of Cu on recombination in high voltage CdTe solar cells

  7. Applied Physics Letters; Local Phonon Mode in thermoelectric Bi2Te2Se from charge neutral antisites

  8. Journal of Physical Chemisty Letters; Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps

  9. Energy Procedia; Low-temperature FTIR investigation of aluminum doped solargrade silicon

  10. IEEE Journal of Photovoltaics; Minority-Carrier Lifetime and Surface Recombination Velocity in Single-Crystal CdTe

  11. Nanoscale; Substantial local variation of Seebeck coefficient in gold nanowires

  12. SPIE Digital Library; Photovoltages and hot electrons in plasmonic nanogaps

  13. International Journal of Heat and Mass Transfer; Grain growth-induced thermal property enhancement of NiTi shape memory alloys for elastocaloric refrigeration and thermal energy storage systems

■ 新型鈣鈦礦材料

  1. Physical Review Materials; Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder

  2. ACS Chemistry of Materials; Electron–Phonon Couplings Inherent in Polarons Drive Exciton Dynamics in Two-Dimensional Metal-Halide Perovskites

  3. ACS Journal of Physical Chemistry C; Photoluminescence Manipulation by Ion Beam Irradiation in CsPbBr3 Halide Perovskite Single Crystals

  4. Advanced Optical Materials; Amplified Spontaneous Emissionand Random Lasing in MAPbBr3 Halide Perovskite Single Crystals

  5. Arxiv; Defect-related states in MAPbI3halide perovskite single crystals revealed by the photoluminescence excitation spectroscopy

■ 納米線(xiàn)

  1. Physical Review Letters; Widely Tunable Single-Photon Source from a Carbon Nanotube in the Purcell Regime

  2. Semiconductor Science and Technology; Bandgap tuning of GaAs/GaAsSb core-shell nanowires grown by molecular beam epitaxy

  3. IOP Nanotechnology; Space charge limited conduction mechanism in GaAsSb nanowires and the effect of in-situ annealing in ultra-high vacuum

■ 生物、有機(jī)分子

  1. Journal of Physical Chemistry Letters; Increased Transfer Efficiency from Molecular Photonic Wires on Solid Substrates and Cryogenic Conditions

  2. ACS Applied Nano Materials; DNA Origami Chromophore Scaffold Exploiting HomoFRET Energy Transport to Create Molecular Photonic Wires

  3. Physical Review A;Quantum dynamics of a driven two-level molecule with variable dephasing

■ 其他研究方向

  1. AIP Conference Proceedings; The equipment control system of the extended x-ray absorption fine structure beamline at Taiwan Photon Source

  2. ACS Applied Nano Materials.; Elimination of Extreme Boundary Scattering via Polymer Thermal Bridging in Silica Nanoparticle Packings: Implications for Thermal Management

  3. Arxiv; Observation of three-state nematicity in the triangular lattice antiferromagnet Fe1/3 NbS2

  4. Arxiv; Ferroelectric Polarization in Antiferroelectric Chalcogenide Perovskite BaZrS3 Thin Fil

用戶(hù)單位

北京大學(xué)

華中科技大學(xué)

山西大學(xué)

山西大學(xué)

首都師大

清華大學(xué)

蘇州納米所

中國(guó)科學(xué)技術(shù)大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

中科院理化所

中科院半導(dǎo)體所

南京大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

中科院理化所

中國(guó)科學(xué)技術(shù)大學(xué)

南京大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

上海理工大學(xué)

南開(kāi)大學(xué)

中山大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

北京大學(xué)

中科院半導(dǎo)體所

中國(guó)科學(xué)技術(shù)大學(xué)

復(fù)旦大學(xué)

中科院半導(dǎo)體所

武漢大學(xué)

西南交通大學(xué)

蘇州科技學(xué)院

清華大學(xué)

中科院半導(dǎo)體所

山西大學(xué)

東南大學(xué)

中國(guó)科學(xué)技術(shù)大學(xué)

中國(guó)科學(xué)院上海高等研究院

南開(kāi)大學(xué)

產(chǎn)品咨詢(xún)

超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器

量子科學(xué)儀器貿(mào)易(北京)有限公司

請(qǐng)?zhí)顚?xiě)您的姓名:*

請(qǐng)?zhí)顚?xiě)您的電話(huà):*

請(qǐng)?zhí)顚?xiě)您的郵箱:*

請(qǐng)?zhí)顚?xiě)您的單位/公司名稱(chēng):*

請(qǐng)?zhí)岢瞿膯?wèn)題:*

您需要的服務(wù):

發(fā)送

中國(guó)粉體網(wǎng)保護(hù)您的隱私權(quán):請(qǐng)參閱 我們的保密政策 來(lái)了解您數(shù)據(jù)的處理以及您這方面享有的權(quán)利。 您繼續(xù)訪問(wèn)我們的網(wǎng)站,表明您接受 我們的使用條款

超精細(xì)多功能無(wú)液氦低溫光學(xué)恒溫器 - 938
量子科學(xué)儀器貿(mào)易(北京)有限公司 的其他產(chǎn)品

FLOW

制冷設(shè)備
相關(guān)搜索
關(guān)于我們
聯(lián)系我們
成為參展商

© 2025 版權(quán)所有 - 京ICP證050428號(hào)